Linear Algebra II

20/03/2014, Thursday, 14:00-16:00

1 (8+7+7=22 pts)

Inner product spaces

Consider the vector space $\mathbb{R}^{2 \times 2}$. Let

$$\langle A, B \rangle = \operatorname{tr}(A^T B)$$

where tr denotes the sum of the diagonal elements.

- (a) Show that $\langle A, B \rangle$ is an inner product.
- (b) Find the distance between the matrices $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix}$. (c) Find the angle between the matrices $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

2 (15+7=22 pts)

Diagonalization

Eigenvalues

- (a) Find an orthogonal matrix that diagonalizes the matrix $\begin{bmatrix} 3 & 0 & -2 \\ 0 & 3 & 0 \\ -2 & 0 & 3 \end{bmatrix}$.
- (b) Without finding its eigenvalues, determine whether or not the matrix $\begin{bmatrix} i & -1 & 1 \\ 1 & -i & -1 \\ -1 & 1 & i \end{bmatrix}$ is unitarily diagonalizable.

$$(15+7=22 \text{ pts})$$

Singular value decomposition

- (a) Compute the singular value decomposition of the matrix $M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}$.
- (b) Find the closest (with respect to Frobenius norm) matrix of rank 2 to M.

4 $(b+b+b+b=24 \text{ p})$	ots)	
----------------------------	------	--

- (a) Let A be a nonsingular matrix. Show that if λ is an eigenvalue of A then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .
- (b) Show that the determinant of an orthogonal matrix is either -1 or 1.
- (c) Show that eigenvalue of an orthogonal matrix must have modulus 1. [Hint: Modulus of a complex number z is defined by $||z|| = (\bar{z}z)^{1/2}$.]
- (d) Let M be a normal matrix. Show that if all eigenvalues are equal to 1 then M = I.