Linear Algebra II

20/03/2014, Thursday, 14:00-16:00

$1 \quad(8+7+7=22 \mathrm{pts})$
Inner product spaces

Consider the vector space $\mathbb{R}^{2 \times 2}$. Let

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)
$$

where tr denotes the sum of the diagonal elements.
(a) Show that $\langle A, B\rangle$ is an inner product.
(b) Find the distance between the matrices $\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}3 & 3 \\ 1 & 2\end{array}\right]$.
(c) Find the angle between the matrices $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$.
$2 \quad(15+7=22 \mathrm{pts})$
Diagonalization
(a) Find an orthogonal matrix that diagonalizes the matrix $\left[\begin{array}{ccc}3 & 0 & -2 \\ 0 & 3 & 0 \\ -2 & 0 & 3\end{array}\right]$.
(b) Without finding its eigenvalues, determine whether or not the matrix $\left[\begin{array}{ccc}i & -1 & 1 \\ 1 & -i & -1 \\ -1 & 1 & i\end{array}\right]$ is unitarily diagonalizable.
$3 \quad(15+7=22 \mathrm{pts})$

Singular value decomposition

(a) Compute the singular value decomposition of the matrix $M=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0\end{array}\right]$.
(b) Find the closest (with respect to Frobenius norm) matrix of rank 2 to M.
$4 \quad(6+6+6+6=24 \mathrm{pts})$
Eigenvalues
(a) Let A be a nonsingular matrix. Show that if λ is an eigenvalue of A then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.
(b) Show that the determinant of an orthogonal matrix is either -1 or 1 .
(c) Show that eigenvalue of an orthogonal matrix must have modulus 1. [Hint: Modulus of a complex number z is defined by $\|z\|=(\bar{z} z)^{1 / 2}$.]
(d) Let M be a normal matrix. Show that if all eigenvalues are equal to 1 then $M=I$.

